Skip to content

November 29, 2017

These artificial muscles can lift 1,000 times their body weight

by John_A

Robots just got a boost in strength thanks to researchers at Harvard’s Wyss Institute and MIT’s Computer Science and Artificial Intelligence Laboratory, who have developed artificial muscles capable of lifting up to 1,000 times their own weight. Despite that super strength, the soft robots are relatively simple creatures, made up of metal and plastic “skeletons” surrounded by air or liquid, and encased in a plastic or textile outer “skin.”

Over the past few decades, soft robotics have made significant advancements in flexibility, allowing them to mimic the movement of biological muscles through the use of actuators. As with a human hand, this physical flexibility allows them to adapt and perform a range of tasks.

However, this dexterity tends to come at the cost of strength, since softer and more flexible materials are often used. In the new design, air or water pressure gives the actuators added strength that otherwise couldn’t be achieved through the materials themselves.

“Artificial muscle-like actuators are one of the most important grand challenges in all of engineering,” Rob Wood, a professor of engineering at Harvard and one of the authors of a paper published this week in the journal PNAS, said in a statement. “Now that we have created actuators with properties similar to natural muscle, we can imagine building almost any robot for almost any task.”

If the soft robots’ strength sounds extraordinary, that’s because it is. In fact, it was a shock even to its creators.

“We were very surprised by how strong the actuators […] were. We expected they’d have a higher maximum functional weight than ordinary soft robots, but we didn’t expect a thousand-fold increase. It’s like giving these robots superpowers,” said Daniela Rus, a professor of engineering and computer science at MIT and one of the authors of the paper.

Inspired by origami, the robots’ design allows them to fold into programmable patterns to save space. Twist them in a certain way and they’ll fold together neatly. Useful as that may be for keeping things packed and orderly, it does create a drawback in that they’re not as easily controlled as conventional robots, since their movements depend on their skeleton, which cannot be adjusted.

Still, the researchers don’t consider this to be all that limiting. By physically designing the robots to move in certain ways, the algorithms required to control them can be simplified. And since the robots are made up of such simple materials, the researchers say one of the actuators can be built in ten minutes for less than a dollar.

Moving forward Rus and his team want to develop even more complex structures, including an artificial elephant trunk that can move and grip just like the real thing.

Editors’ Recommendations

  • Artificial robot muscle may look creepy, but it’s incredibly versatile
  • This flexible skin will help robots sense the world around them
  • Newly developed artificial muscles can lift 1,000 times their own weight
  • MIT’s origami robot transforms to become a boat, a glider, or a wheel
  • Innovative suction robot is designed to hitchhike on the side of a shark

Read more from News

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Note: HTML is allowed. Your email address will never be published.

Subscribe to comments

%d bloggers like this: