Skip to content

June 15, 2017

Microsoft-backed artificial intelligence can beat your ‘Ms. Pac-Man’ high score

by John_A

Why it matters to you

The method used to master Ms. Pac-Man could help demonstrate the benefits of a divide-and-conquer approach in real-world applications.

A team of researchers have managed to develop an artificial intelligence capable of mastering the arcade classic Ms. Pac-Man. Maluuba — a Canadian deep learning startup that was acquired by Microsoft in January 2017 — used a divide-and-conquer technique to empower its system to complete the Atari 2600 version of the game with a perfect score of 999,990.

Maluuba’s approach is interesting, because it breaks down the strategies and maneuvers required to beat the game into their component parts. Various different agents focus on one job and one job alone, while an agent put in charge of managing from the top makes high-level decisions about what actions should be prioritized.

For instance, some agents might be tasked with chasing down pellets, while others focused on avoiding enemies. The decision-making agent would then choose the best option based on weighted logic — if a hundred agents wanted to move left to grab a pellet, but only three wanted to move right to avoid a ghost, it would elect to move right because colliding with the enemy would end the run.

Ms. Pac-Man is relatively widely used in AI research because of the unpredictable nature of its gameplay, according to a post on the official Microsoft blog. Steve Golson, who is credited as co-creator of the original arcade version of the game, notes that this was intentional, as the game was reliant on players spending quarter after quarter on extra lives for it to be a financial success.

Maluuba used reinforcement learning, a process by which an AI receives positive or negative feedback for each attempt it makes at a problem, to address this unpredictability. It’s hoped that reinforcement learning could help foster systems that are better equipped to make decisions on their own, compared to those that are trained via supervised learning, where the system is simply fed good and bad examples to establish a base of experience.

Read more from News

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

Note: HTML is allowed. Your email address will never be published.

Subscribe to comments

%d bloggers like this: