Skip to content

April 12, 2018

AI stuntpeople could lead to more realistic video games

by John_A

Video game developers often turn to motion capture when they want realistic character animations. Mocap isn’t very flexible, though, as it’s hard to adapt a canned animation to different body shapes, unusual terrain or an interruption from another character. Researchers might have a better solution: teach the characters to fend for themselves. They’ve developed a deep learning engine (DeepMimic) that has characters learning to imitate reference mocap animations or even hand-animated keyframes, effectively training them to become virtual stunt actors. The AI promises realistic motion with the kind of flexibility that’s difficult even with methods that blend scripted animations together.

At its heart, DeepMimic revolves around reinforcement training. The closer it gets to the reference material, the more positive reinforcement it receives. It’s a bit more complex than that, mind you. By randomizing the initial body state in a training situation, the training system teaches the character how to perform the intended action rather than whatever motion will reach the goal quickly (say, a backflip instead of hopping backwards).

And importantly, the technology is very generalized. You can teach it to kick or punch a specific target even if the original motion didn’t account for that, for example. DeepMimic is physics-based by its very nature, too, so it can adapt to different body shapes and interruptions like projectiles. So long as it’s technically possible to complete a movement in the first place, it’ll happen. The reference animations are merely the starting point.

The uses for video games are fairly self-evident. You could have characters that move and fight in convincing ways without having to either capture animations for every possible scenario or design the game world around the limited animations you can provide. There are possibilities beyond pure entertainment, to boot. You could use the same basic methodology for training robots to climb and jump obstacles before they’re placed in real-world situations, where the consequences of failure could be very costly.

Via: MIT Technology Review

Source: BAIR, Berkeley News

Advertisements
Read more from News

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Note: HTML is allowed. Your email address will never be published.

Subscribe to comments

%d bloggers like this: