Skip to content

July 7, 2017

Could we stream HD video across the galaxy? This astrophysicist thinks so

by John_A

Why it matters to you

It may be ambitious, but this proposal could give us live HD video streaming from Alpha Centauri. Well, kind of live.

Last year, the Russian billionaire Yuri Milner committed to spending $100 million on “Breakthrough Starshot,” a massive engineering project with the intention of developing a fleet of miniature spacecraft capable of travelling to our nearest neighboring star system, Alpha Centauri — some 20 to 30 years away from Earth travelling at less than a quarter the speed of light.

One of the most tantalizing aspects of travelling to Alpha Centauri is investigating its Proxima Centauri B exoplanet, which possesses an Earth-like mass and orbits within the system’s habitable zone — meaning that it has the potential to harbor life. So far, so good.

The problem is getting the data back from the lightweight solar sail that Breakthrough Starshot aims to send. Radio, for instance, is impossible. An independent astrophysicist named Michael Hippke thinks he has a solution, however — and he’s published a couple of papers online to explain what it might entail. The TLDR version? It involves using an effect called gravitational lensing and the sun’s gravity to amplify signals from the probe for some sweet interstellar space streaming.

“In the first paper of my series, I show that we can communicate with such a probe near Proxima at low data rates, in the vicinity of bits per second, when using large Earth-based telescopes,” Hippke told Digital Trends. “This allows for the transfer of a few images over the course of months, but nothing more. In the second paper, I analyze how to improve the data rate. This can be done using our sun as a telescope. The gravitational field bends the light and a telescope can be put in its focus to collect the signal photons. This allows for much higher data rates.”

According to Hippke’s calculations, the gravitational lens telescope could increase data rate by a factor of one million. That would mean data transfer rates sufficient for live HD video streaming. (“Although live is relative,” he points out. “The speed of light still applies, and it takes the photons 4 years for the journey.)

The coolest part of Hippke’s suggestion is that it uses a lot of existing technology — although it still requires the use of a spacecraft being launched further into space than any we’ve launched before.

“The receiver itself it off-the-shelf established technology,” he said. “A telescope like the Hubble Space Telescope would be totally sufficient in terms of aperture and quality. It would need to be equipped with a coronagraph, also standard technology, and a fast photon detector. The difficult part is to bring the device, which would be 1 to 2 meters, to to a distance of 600 astronomical units — roughly the distance from Earth to the Sun — which takes many decades with classical rockets. However, there are some NASA studies that show options for gravitational swing-bys and high-velocity rockets to make it possible in 30-50 years.”

Plus, there’s that tiny matter of getting a probe near to Proxima in order to send us the data in the first place, of course!




Advertisements
Read more from News

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Note: HTML is allowed. Your email address will never be published.

Subscribe to comments

%d bloggers like this: